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A characterization of Gaussian subspaces of L, is given. It is shown that 
Gaussian subspaces are essentially characterized by the property that all linear 
isometries are induced by measure-preserving transformations. 

Let T be a measure-preserving transformation acting on a probability 
space (a, Sr, P). This T induces a linear isometry V on &(a, F, P) defined 
by V(f) = f o T. The analysis of T by using properties of V is referred to as 
spectral analysis. It is often profitable to consider the action of V on certain 
closed linear invariant subspaces 9 of L,(O, ST, P). In this note we make 
the following assumptions about Y: 

1. 9 generates X, i.e., F is the smallest o-field F such that f is F- 
measurable whenever fE .Y. 

2. j,fdP=Ofor allfEY. 

3. 9 is infinite dimensional. 

Condition (1) is necessary if V restricted to 9 is to contain any infor- 
mation about T, and (2) removes the redundant information that the 
constant functions are invariant under all operators induced by transfor- 
mations. Condition (3) is discussed in Remark 1, at the end. 

Very detailed information is available when 9 is a Gaussian space, cf. 
Kakutani (1960) and VerEk (1962). Y is said to be a Gaussian space if 
every non-zero function in 9 has a normal distribution. The following two 
facts make Gaussian spaces particularly well suited for studying measure- 
preserving transformations. 

A. If two measure-preserving transformations induce unitarily 
equivalent operators on .Y, then they are isomorphic. (This is so because the 
normal distribution is determined by its first two moments.) 
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B. Every linear isometry on Y is induced by a measure-preserving 
transformation (cf. Wiener and Akutowicz (195 7)). 

The purpose of this note is to consider the converse of (B). We shall also 
give a slightly simpler proof of (B) than that given by Wiener and 
Akutowicz (1957). 

THEOREM. Let 9 satisfy assumptions 1, 2 and 3 above. Then Y is a 
Gaussian space if and only if every linear isometry on 24’ is induced by a 
measure-preserving transformation and at least one of these transformations 
is ergodic. 

Suppose 9 is a Gaussian space and let (X,: J E n } be an orthonormal 
basis of ip. We first replace (Q,fl, P) by its Kolmogorov representation. 
Let Q = R”, where R denotes the real line. Let 9 be the u-field of usual 
Bore1 sets on 6. Then p: 52 --t fi defined by rp(w), =X,(o) is an 9- - 3 
measurable map and we define P on R by P’(cp-‘(A)). Finally define X1 by 
XA(&) = 6A and the 5? be the subspace of L2@,y, p) generated by 
{zl: J E A}. It follows that P and 5? have exactly the same probability 
structure. We will prove the theorem on d since that is what we really mean 
by induced transformation. Let V be a linear isometry on 9, and define 
R : d + J? by the equation T(w), = V(XA)(o). V is clearly induced by T and 
it remains to show that T is measure preserving. But for A, ,..., I,, E II and 
B i ,..., B, real Bore1 sets 

T-’ fj [xAjEBj]= i, [V(zAj)EBj]. 
j=l j=l 

Since V is a linear isometry, the random variables {xAj} and { V(x,J) have 
the same covariance structure. Since the random variables are Gaussian, this 
implies that the probabilities are the same: 

T-’ f) [XljEBj]) =P( h [V(Xlj)EBj1) 
j=l j=l 

=f3 

Thus T is measure-preserving. Since 4p is infinite dimensional, there exists an 
orthogonal basis {Z,, Z,,...}. By the Gaussian property, these are 
independent and identically distributed and the transformation that is 
induced by the linear isometry that sends Z, to Z,, , is clearly ergodic. 

Suppose conversely that every linear isometry on 9 is induced by a 
measure-preserving transformation. Let (Xi, X, ,... ) be an orthonormal basis 
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in 9. Since X, is an arbitrary normalized function in 9, it is sufficient to 
show that X, has a normal distribution. Let q(t) = I‘d exp(itX,) dP be the 
characteristic function of X,. Since every unitary operator on the space 
generated by {X, ,..., X,,} is induced by a measure-preserving transformation, 
the joint characteristic function of {X, ,..., X,}, q,(t) = In exp(i C tjxi) dP, is 
given by p,(t) = p(lltll), where lltll is the Euclidean norm of t = (tr ,..., t,). To 
see this consider a unitary operator that sends C tjXj to 11 t 11 X, . Since for all 
n, tp(lltll) is a non-negative definite function on IR”, Theorem 2 of Schoenberg 
(1938) states that q(t) = ir exp(-t20z/2) d&), where P is a Bore1 
probability measure on IR’. Now let Y, Y,, Y2,,.. be a sequence of 
independent random variables where, Y has distribution y and each Yk is 
normal with mean 0 and variance 1. Set Z, = Y Y,. A simple calculation 
shows that {Z1,..., Z,} has the same characteristic function as {X1,..., X,}. 
Since the characteristic functions uniquely determine the distributions we 
may suppose that X, = Y Y,, for all n. Taking linear combinations and L, 
limits, we see that 5P has the form of Y 2, where .@ is Gaussian and Y is 
an independent random variable with distribution ,u. Let V be a linear 
isometry on .P induced by an ergodic measure-preserving transformation T. 
We shall complete the proof by showing that Y is equal to 1 almost 
everywhere. Since 9 is invariant under V, the set [Y = 0] is invariant under 
T and hence has probability zero. Thus for U in 2, W defined on @ by 
W(v) = wv/y is well defined and may be shown to be a linear isometry 
since {Y Y,,} and {Y,} are both orthonormal bases. Since 9 is Gaussian W 
is induced by a measure-preserving transformation S. Since Y is 
stochastically independent of 5? we may suppose Y o S = Y. Now we claim 
that W has no non-zero eigenvectors in 2. Suppose, on the contrary, f is 
such an eigenvector for W. Then Y. f is an eigenvector for V, which implies 
that Y IfI is invariant under T. But since T is ergodic and invariant, this 
means Y IfI is a constant a.s. This contradicts the fact that Y and IfI are 
independent with IfI being unbounded (since f is normal). Since W has no 
eigenvectors on @, S is ergodic on the u-field generated by 9 (see, for 
instance, Wiener and Akutowicz (1957), Theorem 1.) An induction 
argument yields V”(YU) = Y I IV”(U). A ssuming without loss of generality 
that In iJ2 dP= 1, 

1 = Y2U2 dP= lim(l/n) 5 (YU)2 o Tj 
j=l 

= Y* lim(l/n) 2 U, 0 S’ 
j=l 

Thus Y = 1 almost surely, as desired. 1 
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Remark 1. If P!’ is finite dimensional, the distributions that have the 
property that every linear isometry is induced by a measure-preserving 
transformation, are the spherically symmetry distributions. These have been 
studied extensively and it is known that this class, while being wider than the 
spherically symmetric Gaussian distributions, has many properties in 
common with the latter. See, for instance, Lord (1954) and Kelker (1970). 

Remark 2. Let 2 be any Gaussian space and set 9 = Y rz/, where Y 
is a non-negative square integrable random variable, independent of all the 
random variables in 2. Then the above proof shows that P also has the 
property that every linear isometry on P is induced by a measure-preserving 
transformation. P will be Gaussian if and only if Y is a constant almost 
surely. Since 9 and ii7 are indistinguishable as Hilbert spaces, it follows that 
some extra condition would be needed. Ergodicity is perhaps the most 
natural such condition for a measure-preserving transformation and our 
theorem is a confirmation of this. 

Remark 3. It is well known that ergodicity and the property of weakly 
mixing are equivalent for Gaussian spaces (cf., for example, Wiener and 
Akutowicz (1957), Theorems 1 and 6). But, in general, weakly mixing is a 
stronger condition than ergodicity. 
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